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Abstract

Magnetic resonance spectroscopic imaging (MRSI) provides information about the spatial metabolic heterogeneity of an organ in the
human body. In this way, MRSI can be used to detect tissue regions with abnormal metabolism, e.g. tumor tissue. The main drawback of
MRSI in clinical practice is that the analysis of the data requires a lot of expertise from the radiologists. In this article, we present an auto-
matic method that assigns each voxel of a spectroscopic image of the brain to a histopathological class. The method is based on Canonical
Correlation Analysis (CCA), which has recently been shown to be a robust technique for tissue typing. In CCA, the spectral as well as the
spatial information about the voxel is used to assign it to a class. This has advantages over other methods that only use spectral informa-
tion since histopathological classes are normally covering neighbouring voxels. In this paper, a new CCA-based method is introduced in
which MRSI and MR imaging information is integrated. The performance of tissue typing is compared for CCA applied to the whole MR
spectra and to sets of features obtained from the spectra. Tests on simulated and in vivo MRSI data show that the new method is very
accurate in terms of classification and segmentation. The results also show the advantage of combining spectroscopic and imaging data.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic resonance spectroscopy (MRS) is increasingly
being used in the diagnosis of brain tumors, to choose the
most appropriate therapy and to perform therapy follow-
up. With single voxel proton MRS, tissue concentrations
of metabolites can be determined in a well-defined voxel
in a non-invasive way. This can reduce the need for a biopsy,
which is not without risks for the patient [1]. However,
analysis of MR spectra requires a lot of expertise from the
radiologist. To reduce the need of human interaction, several
classifiers have been proposed that try to distinguish tumors
in an automatic way, e.g. [2–7]. Although single voxel
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proton MRS is a relatively fast method to characterise
the metabolic signature of the tumor, radiologists are also
interested in its shape, size and (metabolic) heterogeneity.
This information can be obtained with multivoxel proton
MRSI, in combination with high-quality anatomical MR
images [8]. During an MRSI examination, metabolic infor-
mation is measured in a grid of voxels rather than in one
voxel. This allows radiologists to extract histopathological
information from each voxel as well as information about
the heterogeneity of the tumor. However, due to the large
amount of data that is acquired and needs to be processed
during the investigation of a patient, there is an even stronger
need for automatic ‘classification’ strategies than for single
voxel MRS. More correctly, one should speak of ‘segmenta-
tion’ strategies as the goal is to segment an MRS image
into regions of different tissues. We will explain how the
proposed segmentation method is also able to label the
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detected segments simultaneously. A variety of methods is
available in the literature, and in particular pattern recogni-
tion methods are commonly used to segment MRSI data
[3,9]. The result of a segmentation is a nosologic image
[10]. Such an image summarizes the available information
by coloring each pixel according to the determined histopa-
thological class. In this way, nosologic images can be rou-
tinely and easily used by radiologists for tumor diagnosis.

In this paper, we extend this study in various ways. First
of all, we focus on short echo-time spectra of the brain. We
use short echo-time spectra, because they are more relevant
than long echo-time spectra for tumor classification and
grading due to the presence of signals of more metabolites,
such as myo-inositol, glutamate and glutamine [7,11–14].

Second, for brain tumor diagnosis, it is not sufficient to
segment an MRSI image in normal and tumor tissue. Sev-
eral types and grades of brain tumors may exist in different
patients. For choosing the most appropriate therapy, it is
very important to distinguish between different types of
tumor. In order to deal with different tumor types, we
introduce a two-steps CCA approach. We will explain
how the first step is a tumor typing step, and how in the
second step a segmentation is obtained.

Third, it is shown how to combine multimodal informa-
tion and the influence of adding MRI information to the
MRSI data is investigated. Four MR images with different
contrasts (see Section 3) were acquired for every patient.
This extra information is shown to improve the classifica-
tion performance in other pattern recognition studies
[9,10]. To integrate MRSI and MRI information in a
CCA-based method, a dimension reduction has to be per-
formed on the MR spectra by the extraction of character-
istic features [15]. Most other classifiers or pattern
recognition methods also use features as input variables,
because they cannot deal with high-dimensional input
spaces. As the CCA-method can be applied either to a
MR spectrum or to a set of features, it is very interesting
to compare the results obtained with different CCA-
approaches.

In this paper, we start with a short overview of the the-
ory of CCA and how CCA is applied for nosologic imaging
of the brain (Section 2). In Section 3 we describe how the
simulations are constructed. Further, the accuracy of the
method is investigated on baseline-corrected MR spectra.
We also compare these results with the results of the
CCA-method on features, without and with MRI informa-
tion. The results on simulated and in vivo MRSI are dis-
cussed in Section 4, respectively. Finally, the main
conclusions are formulated in Section 5.

2. Method

2.1. Canonical correlation analysis (CCA)

We shortly describe the mathematical idea of CCA [16].
For more details, we refer to [17]. A reliable implementa-
tion is described in [18]. Ordinary correlation analysis
quantifies the relation between two variables x and y by
means of a correlation coefficient q:

q ¼ Cov½x; y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ½x�V ½y�

p

CCA is a multivariate extension of ordinary correlation
analysis. Consider 2 multivariate zero-mean vectorsx =
[x1(f), . . . ,xm(f)]T and y = [y1(f), . . . ,yn(f)]T, f = 1, . . . ,N.
Two new scalar variables, X and Y, are generated as a linear
combination of the components in x and y:

X ¼wx1
x1 þ � � � þ wxm xm ¼ wT

x x

Y ¼wy1
y1 þ � � � þ wym

ym ¼ wT
y y

CCA computes the coefficients wx and wy that maximize
the correlation between X and Y. These coefficients are
called regression weights and X and Y are called canonical
variates. The resulting correlation coefficient is called the
canonical correlation coefficient.
2.2. Applying CCA to spectra

During an MRSI acquisition, MR spectra are measured
in a grid of voxels. Based on the information contained in
these MR spectra, the goal is to segment the image in dif-
ferent regions. All the voxels in one region belong to the
same tissue type. Each voxel can be assigned individually
to a certain tissue type by using a sophisticated single voxel
classifier like LS-SVM [6] or simply by computing the cor-
relation or distance between the spectrum in the considered
voxel and a known tissue type model [10]. However, with
this approach, the spatial information provided by multi-
voxel MRS is not used. When all the surrounding voxels
contain healthy tissue, the considered voxel also has a high
probability to contain healthy tissue. CCA exploits this
spatial information by considering a multivariate vector
X that contains the spectrum of the voxel under investiga-
tion and some spectra of the surrounding voxels. Different
spatial models can be used. In this study, the spatial ‘star’
model is used, defined as:

X ¼

x5ðf Þ
x5ðf Þþx2ðf Þ

2

x5ðf Þþx4ðf Þ
2

x5ðf Þþx6ðf Þ
2

x5ðf Þþx8ðf Þ
2

0
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with xi(f) defined in Fig. 1. In this case, it can be seen that
the information contained in the voxel under investigation
(x5) is always used at least as much as the information in
the surrounding voxels.

During the classification of a voxel, CCA also integrates
as much spectral information as possible in a spectral model,
the multivariate Y. The first component y1 of this spectral
model for each tissue type is constructed as the mean of
a database containing in vivo spectra, characteristic of that



Fig. 1. Diagram of applying CCA to MRSI. We want to assign voxel x5 to
a tissue type. The other xi are surrounding voxels that will also be used in
the analysis of voxel x5. y1 is the model spectrum of a certain tissue, and y2

takes into account realistic variations. CCA computes the regression
weights wxi and wyi

in order to maximize the correlation between X and Y.

Fig. 2. All voxels in an MRSI grid are displayed in the coordinate system
of the computed canonical correlation coefficients with different tissue
types. Three clouds corresponding to the three present tissue types are
visible.
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tissue type. To model natural inter-spectral and inter-patient
variability, a variational component y2 is computed as
follows. First the computed mean is subtracted from all
in vivo spectra in the database. Secondly, PCA is performed
on this mean-subtracted database. The first principal
component contains most of the variations, and is used
as y2.

To obtain a segmentation with CCA, canonical correla-
tion coefficients are computed with a spatial model and the
spectral models of different tissue types. A visual represen-
tation of the analysis of one voxel (x5) with a certain tissue
type is given in Fig. 1.

The computed canonical correlation coefficients indicate
how likely it is that the considered voxel belongs to the dif-
ferent tissue types. In the case of three tissue types, these
three canonical correlation coefficients can be displayed
in the three-dimensional coordinate system (first canonical
correlation coefficient, second canonical correlation coeffi-
cient and third canonical correlation coefficient). The dis-
tribution of the voxels in this coordinate system is
displayed for a simulated MRS image with normal, mixed
and tumor tissue in Fig. 2. Three clouds of points can be
distinguished, corresponding to the three present tissue
types. The voxels, indicated by circles, have a high correla-
tion with normal tissue, the voxels, indicated with stars,
have a high correlation with tumor tissue and the voxels,
indicated with diamonds lie between both clouds. A clus-
tering method [19] can be applied to these canonical corre-
lation coefficients. However, in order to avoid well-known
problems of clustering algorithms (e.g. initialisation, num-
ber of clusters, . . .), another criterion is used to assign a
voxel to a certain tissue type: the highest canonical correla-
tion coefficient.
2.3. A two-steps CCA-based method

As there exist several types of brain tumor malignancy, a
model spectrum has to be constructed for each tumor type
and for each corresponding mixed tissue since it can be
expected that only one tumor type is present in a patient.
This mixed tissue is composed of fractions of the model
spectrum for healthy and tumor tissue.

CCA is able to discriminate between different tumor
types, but we noticed that voxels with mixed tissue are
not always correctly detected. To avoid this problem a
two-steps method is proposed. The first step is a tumor typ-
ing step and the second the segmentation step. In the first
step only the model spectra of normal tissue, CSF and
the different tumor spectra are used. As pathologists type
the tumor with respect to the most malignant tissue, this
step is performed to detect the most malignant tissue pres-
ent. By introducing this second step, we also ensure that no
different tumor types will be found (e.g. meningioma and a
glial tumor) inside the same tumor mass. In the second
step, CCA is applied with the model spectrum from CSF,
normal tissue, the detected tumor tissue and corresponding
mixed tissue. In this step, the heterogeneity of the tumor is
shown.
2.4. Feature-based approach

When we want to integrate the available MRSI and
MRI information in the CCA-based method, harmonisa-
tion of both input spaces is necessary. This multimodal
integration requires 2 steps, which are described.

At most 4 images with different contrasts are acquired
during a study. These 4 extra variables per voxel will not
influence the result, when they are added to the spectra
of 1024 variables. The spectra have to be summarized into
representative features first. This dimension reduction can
be done by quantification of the spectra. This is meaning-
ful, since the quantified amplitudes are a direct estimate
of the concentrations of the most important metabolites.
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For the present study AQSES [20] was used, that fits an
in vivo spectrum in the complex time domain as a linear
combination of in vitro metabolite spectra. To avoid over-
fitting, only the 8 most important metabolites (myo-inosi-
tol, choline, creatine, glutamine, glutamate, NAA, alanine
and lactate) were quantified, together with the lipid peaks
at 0.9 and 1.3 ppm. These metabolite levels formed the first
10 values in the set of features.

In addition to feature reduction, also the spatial
resolution of both imaging modalities has to be matched.
This can be done in several ways. We decided to lower
the resolution of the MR image to MRSI voxel size.

The images with 4 contrasts were aligned with respect to
the spectroscopic image and the MR pixel intensities were
averaged out over a spectroscopic voxel. These 4 image
variables formed the last 4 values in the set of features.

Although the application of the CCA method either on
spectra or on features does not differ, the implementation
does. The aim of the spatial model of CCA is to reduce
the noise by ‘averaging out’ some voxels. In order to obtain
a realistic solution, all the regression weights of X should
have the same sign. When the CCA-method is applied to
spectra, the mathematically optimal solution satisfies most
of the time this constraint. However, in the feature case,
this constraint is violated with the implementation given
in [18], and has to be imposed explicitly. In [21,22] it is
proven that an elegant constrained CCA solution exists
in the special case the regression weights are imposed to
be non-negative. Such a constrained CCA solution equals
an unconstrained CCA solution when one or several
variables have been excluded.

2.5. Algorithmic description of feature-based approach

For reasons of clarity, we resume our method:

• STEP 1: Tumor typing:For every voxel:

1. Compute constrained CCA with spectral model of

normal tissue
2. Compute constrained CCA with spectral model of

CSF
3. Compute constrained CCA with spectral model of

first tumor type
4. . . .
5. Compute constrained CCA with spectral model of

last tumor type
and type the voxel according to the highest canonical
correlation coefficient.The tumor type is detected and
used in STEP 2.
• STEP 2: Segmentation:For every voxel:

1. Compute constrained CCA with spectral model of

corresponding mixed tissue
2. Compare this canonical coefficient with the coeffi-

cients, computed in STEP 1 of normal tissue,
CSF and detected tumor tissue

and type the voxel according to the highest canonical
correlation coefficient. This gives the segmentation.
3. Materials

3.1. Data acquisition

In this study, data from 24 patients with a brain tumor
and from 4 volunteers are used. These data were obtained
within the EU project INTERPRET [23], and acquisition
has been approved by the ethical committee of the Univer-
sity Medical Center Nijmegen, and from all patients writ-
ten informed consent was obtained. Each patient’s tumor
was diagnosed by consensus on a histopathological study.
The diagnosis was done according to the rules of the World
Health Organization (WHO). 10 patients had a glial brain
tumor of grade II (consisting of astrocytic, oligoastrocytic
and oligodendroglial tumors), 5 of grade III (consisting of
astrocytic, oligoastrocytic and oligodendroglial tumors)
and 7 of grade IV (glioblastoma) and 3 patients were diag-
nosed with a meningioma tumor. The MR data were
acquired with a 1.5 T Siemens Vision whole body scanner,
using a CP-head coil. For every patient first 4 MR images
were acquired: T1 weighted (TE/TR = 15/644 ms), T2

weighted (TE/TR = 16/3100 ms), proton density weighted
(TE/TR = 98/3100 ms) and a Gadolinium enhanced T1

image (15 ml of 0.5 M Gd-DTPA). Also both water sup-
pressed and unsuppressed proton MR Spectroscopic Imag-
es were acquired. This MRSI data set was acquired using a
2D STEAM pulse sequence with the STEAM box posi-
tioned in a transversal plane through the brain showing
the largest tumor in the Gd-image. MRSI parameters were:
16 · 16 · 1024 samples, TR/TE/TM = 2000 or 2500/20/
30 ms, slice thickness = 12.5 or 15 mm, FOV = 200 mm,
spectral width = 1000 Hz and NS = 2. Eddy current cor-
rection was performed [24], followed by water removal
with HLSVD-PRO [25], and finally a simple baseline cor-
rection was done by filtering the time signal with a highpass
filter with a filterwidth of 5 ms, followed by the subtraction
of the residual from the original time domain signal. Zero
order phase was already corrected during eddy current cor-
rection. Manually, the first order phase of the average spec-
trum of a patient was used to reset the first order phase of
all spectra of that patient. Finally, all spectra were normal-
ised with respect to the water signal [26].

3.2. Construction of simulated MRS images

From the in vivo data set, a large database of represen-
tative spectra for the different tumor types, normal tissue
and CSF was created for simulating purposes. This data-
base was divided in two parts. From each tissue type, 25
spectra were used to construct the spectral model, shown
in Fig. 3. As can be seen, the spectra show that the different
tissue types are characterised by different contributions of
the metabolites of interest. The other spectra were used
to simulate 10 · 10 MRS images for each tissue type as
shown in Fig. 4. The mixed spectra for all tumor types in
these MRS images were artificially generated by averaging
out a normal and a tumor spectrum.



Fig. 3. The first component (y1) of the spectral model for the different tissue types, present in this study. Note that the residual metabolite signals in the
spectrum of CSF are due to a partial volume effect (contamination with other brain tissue). (a) Normal tissue, (b) CSF, (c) grade II, (d) grade III, (e)
glioblastoma, (f) meningioma.
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Fig. 4. Artificially created MRS image, partitioned into normal, mixed
and tumor tissue. This partition was used for all the simulated MRS
images.
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Three types of simulated MRS images were created in
order to evaluate the performance of CCA. In the first
experiment MR spectra were used as input, the second
experiment was done with a set of 10 quantified metabolite
concentrations and the third experiment used a set of 14
features (10 metabolite concentration variables and 4
image variables) as input. For the experiments, the data-
base was randomly split 5 times in order to obtain different
model spectra and simulated MRS images. As there were
four different tumor types in the database (grade II, grade
III, glioblastoma and meningioma), the CCA-method was
evaluated on 20 images with different spatial models. For
comparison the result of ordinary correlation was
computed.

For experiment 2, the whole database was quantified.
Using the same partitioning of the database as in the spec-
tra case, the 20 corresponding grids of sets of metabolite
levels were created.

For experiment 3, the image variables were added to the
quantified metabolite levels.
4. Results and discussion

4.1. Simulation study

Fig. 5 demonstrates the necessity of the two-steps
method. The left figure shows the result on a simulated
MRSI example of grade III when all the constructed spec-
tral models are used. A large region with normal tissue (1)
and a region with tumor tissue of grade III (4) are detected.
In the transition region, voxels are assigned to grade II (3),
mixed tissue of grade II (7), mixed tissue of grade III (8)
and mixed tissue of meningioma (10). We simulated the
image with only grade III spectra and spectra of mixed
grade III. A major part of the voxels are assigned incorrectly.
In Fig. 5b, the first step of the proposed two-steps method
is applied: only spectral models of normal and pure tumor
are used. A region with normal tissue (1) and a region
with grade III tumor (4) are segmented. In addition, two
voxels are assigned to grade II (3). As clinicians type the



Fig. 5. The result of CCA on spectra with spatial ‘star’ model on a simulated MRSI example with a grade III tumor. Only the tumor region is shown. (a)
When all the constructed spectral models are used, (b) step one for tumor labeling: only spectral models of normal and tumor tissue are used, (c) step two
for tissue segmentation: only spectral models of normal tissue, the detected tumor and corresponding mixed tissue are used. Explanation of numbers: 1
normal; 2 CSF; 3 grade II; 4 grade III; 5 glioblastoma; 6 meningioma; 7 mixed grade II; 8 mixed grade III; 9 mixed glioblastoma; 10 mixed meningioma.
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Fig. 6. The result of (a) ordinary correlation on spectra, (b) ordinary
correlation on features, (c) CCA on spectra, (d) CCA on features.

Table 1
The segmentation accuracy of the segmented image by CCA and cross-
correlation

Spectra Metabolite levels Metabolite levels
+ image vars

CCA 97.3 95 98.2
Ordinary correlation 91 93.7 95.5

The displayed value is the mean value of the results on 20 artificially
generated MRS images with different tumor types. Values in %.

M. De Vos et al. / Journal of Magnetic Resonance 184 (2007) 292–301 297
tumor with respect to the most malignant tissue present,
the detected tumor type is convincingly grade III. In our
second step (Fig. 5c), the MRS image is analysed with spec-
tral models of normal tissue (1), tumor (4) and mixed (8)
tissue of grade III. Three homogeneous regions are seg-
mented. Compared to Fig. 5a, this result is certainly more
correct and more easy to interpret.

On all the simulated MRS images, CCA found in the
first step the correct tumor type. The simulation may be
biased by the fact that the simulated MRSI are constructed
with a database containing only carefully selected spectra.
In the rest of this section, we only discuss the segmentation
accuracy.

Before discussing more general results, it is useful to
have a closer look at the segmentation result on one simu-
lated MRS image. Fig. 6 compares the result of ordinary
correlation (a (spectra) and b (14 features)) with the result
of CCA (c (spectra) and d (14 features)) using the spatial
‘star’ model on a grade II tumor. The red, green and blue
regions represent respectively the detected tumor, mixed
and normal tissue. The example clearly shows the advan-
tage of using spatial information: ordinary correlation does
not segment homogeneous regions, but assigns a lot of iso-
lated voxels to the wrong tissue type. Especially the distinc-
tion between tumor tissue and mixed tissue is not done
correctly. The CCA-based method detects correctly the
tumor region, surrounded by a band of mixed tissue. This
results in a segmentation accuracy of 98% for CCA. It is
observed that most of the misclassified voxels are corner
voxels. This is logical, because corner voxels are surround-
ed by less voxels of the same tissue type. On Fig. 6, we can-
not see differences between the CCA-method on spectra
and features. Both perform in this case similarly. It is how-
ever interesting to note that misclassified voxels in the spec-
tra case not necessarily correspond to misclassified voxels
in the feature case.

To compare the different CCA approaches in a general
way, the segmentation accuracy of the 20 segmented images
is obtained by simply counting the number of correctly
classified voxels. The average value is given in Table 1.
The columns of the table correspond to three kinds of input
vectors: using the MR spectra, using the quantified metab-
olite levels or using the features.

The lower performance of segmentation accuracy of
the ordinary correlation analysis compared to CCA is
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confirmed. When the different input strategies are com-
pared, it is clearly seen that quantifying the spectra before
applying CCA reduces the segmentation accuracy. This
approach should never be used, as the quantification step
can introduce errors. However, quantifying the spectra
makes sense when image information is added. The values
displayed in the third column are higher than the values in
the second column, which shows that adding image infor-
mation improves the segmentation result. The accuracy
with feature sets of 14 variables is slightly higher than the
accuracy of the spectra case. However, the differences are
very small. Keeping in mind that we only work with 20
carefully constructed simulated examples, we can state that
the spectra and feature approaches perform similarly in
terms of accuracy.

4.2. In vivo

Also several in vivo MRS images were analysed. The
CCA-results on 4 patients are discussed below. We focus
in this part on differences between the two valuable
approaches, namely CCA on spectra and CCA on feature
sets of 14 variables. Care was taken that the model spec-
trum was constructed with 25 spectra of other patients.
So independency is guaranteed. The colors of the segments
in Figs. 7–10 have a specific meaning. As the used tissue
types differ in the tumor typing and segmentation steps, it
is not possible to use in both steps the same color legend.
After the tumor typing step, dark blue is used for normal
tissue, light blue for CSF, green for grade II, yellow for
grade III, orange for glioblastoma and red for meningioma.
After the segmentation step, blue represents normal tissue,
green mixed tissue, orange the detected tumor tissue and
red is used for CSF.

Fig. 7 shows the result of CCA on features for a patient
with a glioblastoma tumor. In the first step several glioblas-
toma voxels are detected, but also several voxels at the
boundary of the glioblastoma region are assigned to grade
III. This can be expected since tumors are known to be very
heterogeneous. The border between normal glial tissue and
the center of the tumor is often lower in grade. The diagno-
sis of the method is correctly glioblastoma. In the second
step most ‘grade III voxels’ in Fig. 7a are assigned to mixed
tissue in Fig. 7b as the model spectra of grade III and
mixed glioblastoma are very similar. It can also be seen
that the segmented regions with CSF correspond nicely
to the ventricles in the MR image.

In Fig. 8 the results with spectra and features are com-
pared after the tumor typing step on a tumor of grade
III. Although the detected tumor region is large, the
CCA method on spectra (Fig. 8a) only detects one voxel
of grade III in the first step. This tumor is probably very
heterogeneous and only a very small part of the tumor will
really be of grade III. For this patient, the diagnosis based
on the most malignant tumor present, will still be correct
(grade III) but this example illustrates the limitations of
methods that improve robustness by including spatial
information. When the tumor region is too small, the
tumor will be hidden by the surrounding voxels. Compared
to the result obtained with features (Fig. 8b) we can clearly
state that the result of CCA on features is better, as there is
more convincingly a grade III region detected (like in [9]).
In the second step, both approaches gave similar results.

Fig. 9 compares the segmentation results of both
approaches on a meningioma tumor. The first step is not
shown as a region with meningioma is convincingly detected
by both CCA approaches. In the second step, the present
meningioma tumor is nicely segmented in both figures.
But it is also seen that the CCA method based on spectra
segments three lines as a (homogeneous) region of mixed
tissue. These lines contain normal spectra. However, the
spectra in the lower part are of minor quality compared
to the spectra in the upper part of the grid.

Finally, Fig. 10 compares on the same patient the results
of both approaches after step 1 and step 2. For this patient
no histopathological agreement was reached. The patholo-
gists who validated the tumor disagreed between grade II
and grade III. Both CCA on spectra and CCA on features
classify the large area as grade III. The result of ordinary
correlation is not shown, but ordinary correlation assigned
two voxels to glioblastoma tissue (grade IV). These are
clearly misclassifications, that will lead to the wrong diag-
nosis. These misclassifications are avoided by the use of
spatial information. The most interesting part of this exam-
ple is however the right ventricle. CCA on spectra assigns
these CSF-voxels wrongly to grade II (step 1) or mixed tis-
sue (step 2). When features are used as input, the two ven-
tricles are nicely segmented and correctly classified. This is
certainly due to the incorporation of the image variables
because in the MR images the ventricles are clearly visible.
It can also be noted that in this figure and in Fig. 8, the seg-
mentation boundaries differ between both approaches.
However, it cannot be said which segmentation is the best,
because no golden standard is available. A comparison
between the obtained segmentation and the high-resolution
MR images shows that the boundary of mixed voxels
obtained with the method makes sense.

In [18], an extensive study was done in order to demon-
strate the computational efficiency of the CCA-based
segmentation. A segmentation based on the original MR
spectra took some seconds, the segmentation based on
features in this study was even faster due to the limited
number of features. However, quantitation of the spectra
takes 10–20 min with AQSES. Taking this into account,
the overall segmentation on the original MR spectra is
the fastest segmentation.

Finally, we have to remark that the use of this accurate
method has one drawback. A reliable and representative
model spectrum has to be constructed for the present tissue
types, in order to obtain a meaningful result. To construct
all the spectral models, a database of carefully validated
spectra has to be generated. This takes time, especially
for rarely present tumor types. Constructing a spectral
model is even ‘impossible’ when there are ‘unexpected’
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Fig. 7. The result of CCA on features (a) after the tumor typing step and (b) after the segmentation step.

a b

Fig. 8. The result of CCA after the tumor typing step (a) applied on spectra and (b) applied on features.

a b

Fig. 9. The result of CCA after the tumor typing step (a) applied on spectra and (b) applied on features for a patient with a meningioma tumor.
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tissue types in a new MRSI dataset. In this study, ‘unexpected’
tissue types are e.g. edema, necrosis, . . .. During the on-going
European eTumour project [27], a large database of all
possibly expected tissue types (adults & children) is being
constructed. With this database, optimal spectral models
can be generated. We expect that our CCA-based method
with these spectral models will in the future reliably assign
MRSI voxels to the correct histopathological class.



a b

dc

Fig. 10. The result of CCA on spectra (a) after the tumor typing step and (b) after the segmentation step and the result of features in (c) and (d).
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5. Conclusion

CCA is a technique that quantifies the relationship
between two multivariate vectors. In [18] CCA was success-
fully applied to segment long echo-time prostate MRSI. In
this paper, a CCA-based method is introduced to translate
short echo-time brain MRS images into easy-to-under-
stand nosologic images. In order to distinguish in a reliable
way between different brain tumor types, a two-steps
method is presented. The first step is a tumor typing step
and in the second step the heterogeneity of the detected
tumor is shown. In addition, we introduce a CCA-based
method on feature sets. This feature sets integrate informa-
tion of MRSI and MRI. We also show that the CCA-based
method on such feature sets outperforms the CCA-based
method on the whole spectra in in vivo cases.
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